作者:微信小助手
发布时间:2023-10-13T15:58:59
用的数据库是mysql5.6,下面简单的介绍下场景。 课程表 数据100条。 学生表 数据70000条。 学生成绩表 数据70w条。 查询目的: 查找语文考100分的考生。 查询语句: 执行时间:30248.271s 晕,为什么这么慢,先来查看下查询计划: 发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。 先给sc表的c_id和score建个索引。 再次执行上述查询语句,时间为: 1.054s 快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建。 索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。 但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划: 查看优化后的sql: 补充:这里有网友问怎么查看优化后的语句。 方法如下: 在命令窗口执行 有type=all 按照我之前的想法,该sql的执行的顺序应该是先执行子查询。 耗时:0.001s 得到如下结果: 然后再执行 耗时:0.001s 这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY, mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*8次。 那么改用连接查询呢? 这里为了重新分析连接查询的情况,先暂时删除索引 执行时间是:0.057s 效率有所提高,看看执行计划: 这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引 在执行连接查询 时间: 1.076s, 竟然时间还变长了,什么原因?查看执行计划: 优化后的查询语句为: 貌似是先做的连接查询,再进行的where条件过滤。 回到前面的执行计划: 这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序: 正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where 。 过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql 。 即先执行sc表的过滤,再进行表连接,执行时间为:0.054s 。 和之前没有建s_id索引的时间差不多。 查看执行计划: 先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引。 再执行查询: 执行时间为:0.001s,这个时间相当靠谱,快了50倍。 执行计划: 我们会看到,先提取sc,再连表,都用到了索引。 那么再来执行下sql。 执行时间0.001s 执行计划: 这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。 补充:最近又重新导入一些生产数据,经测试发现,前几天优化完的sql执行效率又变低了。 调整内容为SC表的数据增长到300W,学生分数更为离散。 先回顾下: 执行sql 执行时间:0.061s,这个时间稍微慢了点。执行计划: 这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度。 单从一个字段看,区分度都不是很大,从SC表检索, 而 将会更高,从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大,因此根据具体。 业务情况建立多列的联合索引是必要的,那么我们来试试吧。 执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接受的。 执行计划: 该语句的优化暂时告一段落。 上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引。 后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。 查询语句如下: 索引: 分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s执行计划: 发现 这是mysql对多个单列索引的优化,对结果集采用intersect并集操作 我们可以在这3个列上建立多列索引,将表copy一份以便做测试 查询语句: 执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多 执行计划: 最左前缀 多列索引还有最左前缀的特性: 执行以下语句: 都会使用到索引,即索引的第一个字段sex要出现在where条件中 就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可 如: 执行时间:0.003s 要比取所有字段快的多 时间:0.139s 在排序字段上建立索引会提高排序的效率 最后附上一些sql调优的总结,以后有时间再深入研究 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等 建立单列索引 根据需要建立多列联合索引 根据业务场景建立覆盖索引 多表连接的字段上需要建立索引 这样可以极大的提高表连接的效率 where条件字段上需要建立索引 排序字段上需要建立索引 分组字段上需要建立索引 Where条件上不要使用运算函数,以免索引失效create table Course(
c_id int PRIMARY KEY,
name varchar(10)
)create table Student(
id int PRIMARY KEY,
name varchar(10)
)CREATE table SC(
sc_id int PRIMARY KEY,
s_id int,
c_id int,
score int
)select s.* from Student s
where s.s_id in (
select s_id
from SC sc
where sc.c_id = 0 and sc.score = 100 )EXPLAIN
select s.* from Student s
where s.s_id in (
select s_id
from SC sc
where sc.c_id = 0 and sc.score = 100 )CREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);SELECT
`YSB`.`s`.`s_id` AS `s_id`,
`YSB`.`s`.`name` AS `name`
FROM
`YSB`.`Student` `s`
WHERE
< in_optimizer > (
`YSB`.`s`.`s_id` ,< EXISTS > (
SELECT
1
FROM
`YSB`.`SC` `sc`
WHERE
(
(`YSB`.`sc`.`c_id` = 0)
AND (`YSB`.`sc`.`score` = 100)
AND (
< CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id`
)
)
)
)select s_id
from SC sc
where sc.c_id = 0 and sc.score = 100select s.*
from Student s
where s.s_id in(7,29,5000)SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100sc_c_id_index,sc_score_index
。CREATE index sc_s_id_index on SC(s_id);
show index from SCSELECT
`YSB`.`s`.`s_id` AS `s_id`,
`YSB`.`s`.`name` AS `name`
FROM
`YSB`.`Student` `s`
JOIN `YSB`.`SC` `sc`
WHERE
(
(
`YSB`.`sc`.`s_id` = `YSB`.`s`.`s_id`
)
AND (`YSB`.`sc`.`score` = 100)
AND (`YSB`.`sc`.`c_id` = 0)
)SELECT
s.*
FROM
(
SELECT
*
FROM
SC sc
WHERE
sc.c_id = 0
AND sc.score = 100
) t
INNER JOIN Student s ON t.s_id = s.s_idCREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);SELECT
s.*
FROM
(
SELECT
*
FROM
SC sc
WHERE
sc.c_id = 0
AND sc.score = 100
) t
INNER JOIN Student s ON t.s_id = s.s_idSELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100show index from SC
SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=81 and sc.score=84c_id=81
检索的结果是70001,score=84
的结果是39425。c_id=81 and score=84
的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率。alter table SC drop index sc_c_id_index;
alter table SC drop index sc_score_index;
create index sc_c_id_score_index on SC(c_id,score);总结
(虽然mysql会对连表语句做优化)
索引优化
单列索引
select * from user_test_copy where sex = 2 and type = 2 and age = 10
CREATE index user_test_index_sex on user_test_copy(sex);
CREATE index user_test_index_type on user_test_copy(type);
CREATE index user_test_index_age on user_test_copy(age);type=index_merge
多列索引
create index user_test_index_sex_type_age on user_test(sex,type,age);
select * from user_test where sex = 2 and type = 2 and age = 10
select * from user_test where sex = 2
select * from user_test where sex = 2 and type = 2
select * from user_test where sex = 2 and age = 10索引覆盖
select sex,type,age from user_test where sex = 2 and type = 2 and age = 10
排序
select * from user_test where sex = 2 and type = 2 ORDER BY user_name
create index user_name_index on user_test(user_name)
当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低,
那么如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。
只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率
来源:cnblogs.com/tangyanbo/p/4462734.html