作者:微信小助手
发布时间:2023-12-26T09:49:58
下图是二叉树的索引方式:
哪些情况需要创建索引:
哪些情况不推荐建立索引:
表中的列设定为主键后,数据库会自动建立主键索引。
单独创建和删除主键索引语法:
表中的列创建了唯一约束时,数据库会自动建立唯一索引。
单独创建和删除唯一索引语法:
即一个索引只包含单个列,一个表可以有多个单值索引。
建表时可随表一起建立单值索引
单独创建和删除单值索引语法:
即一个索引包含多个列。
建表时可随表一起建立复合索引
单独创建和删除复合索引语法:
使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MYSQL是如何处理SQL语句的。可以用来分析查询语句或是表的结构的性能瓶颈。其作用:
EXPLAIN关键字使用起来比较简单:explain + SQL语句:
建表语句:
CREATE TABLE wk1(
id INT(10) AUTO_INCREMENT,
name VARCHAR(100),
PRIMARY KEY (id)
);
CREATE TABLE wk2(
id INT(10) AUTO_INCREMENT,
name VARCHAR(100),
PRIMARY KEY (id)
);
CREATE TABLE `weikai_test` (
`id` int NOT NULL,
`name` varchar(20) DEFAULT NULL,
`sex` varchar(20) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
-- 每张表中添加一条数据
INSERT INTO wk1(name) VALUES(CONCAT('wk1_',FLOOR(1+RAND()*1000)));
INSERT INTO wk2(content) VALUES(CONCAT('wk2_',FLOOR(1+RAND()*1000)));
INSERT INTO weikai_test(`id`, `name`, `sex`) VALUES (1, '我', '男');
id字段介绍:
代码演示:
#id相同时,执行顺序是从上往下
explain select * from wk1,wk2,wk3 where wk1.id=wk2.id and wk2.id = wk3.id;
#id不相同时,执行顺序是从下往上
explain SELECT wk1.id from wk1 WHERE id = (SELECT wk2.id FROM wk2 WHERE id = (SELECT weikai_test.id FROM weikai_test WHERE name = "我"))
#id相同和id不同
explain SELECT * FROM wk1 WHERE id = (select wk2.id from wk2,(select * from weikai_test) s3 where s3.id = wk2.id);
select_type字段介绍:
查询的类型,常见值有:
SIMPLE
:简单的 select 查询,查询中不包含子查询或者UNION。
PRIMARY
:查询中若包含任何复杂的子部分,最外层查询则被标记为Primary。
DERIVED
:在FROM列表中包含的子查询被标记为DERIVED(衍生),MySQL会递归执行这些子查询, 把结果放在临时表里。(mysql5.7+过后)
SUBQUERY
: 在SELECT或WHERE列表中包含了子查询。
table字段介绍:
type字段介绍:
System
:表只有一行记录(等于系统表),这是const类型的特列,平时不会出现,这个也可以忽略不计。
Const
:表示通过索引一次就找到了,const用于比较primary key或者unique索引。因为只匹配一行数据,所以很快,如将主键置于where列表中,MySQL就能将该查询转换为一个常量。
eq_ref
:唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于主键或唯一索引扫描。
ref
:非唯一性索引扫描,返回匹配某个单独值的所有行。本质上也是一种索引访问,它返回所有匹配某个单独值的行,然而,它可能会找到多个符合条件的行,所以他应该属于查找和扫描的混合体。
range
:只检索给定范围的行,使用一个索引来选择行。key 列显示使用了哪个索引 一般就是在你的where语句中出现了between、<、>、in等的查询这种范围扫描索引扫描比全表扫描要好,因为它只需要开始于索引的某一点,而结束语另一点,不用扫描全部索引。
Index
:Full Index Scan,index与ALL区别为index类型只遍历索引树。这通常比ALL快,因为索引文件通常比数据文件小。也就是说虽然all和Index都是读全表,但index是从索引中读取的,而all是从硬盘中读的。
all
:Full Table Scan,将遍历全表以找到匹配的行。
从最好到最差依次是:system>const>eq_ref>ref>range>index>All
。一般来说,最好保证查询能达到range级别,最好能达到ref。
possible_keys字段介绍:
key字段介绍:
key_len字段介绍:
ref字段介绍:
rows字段介绍:
extra字段介绍:
一些常见的重要的额外信息:
Using filesort
:MySQL无法利用索引完成的排序操作称为“文件排序”。
Using temporary
:Mysql在对查询结果排序时使用临时表,常见于排序order by和分组查询group by。
Using index
:表示索引被用来执行索引键值的查找,避免访问了表的数据行,效率不错。
Using where
:表示使用了where过滤。
尽量避免Using filesort!
代码演示:
drop table if exists students;
CREATE TABLE students (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT "主键id",
sname VARCHAR (24) COMMENT '学生姓名',
age INT COMMENT '年龄',
score INT COMMENT '分数',
time TIMESTAMP COMMENT '入学时间'
);
INSERT INTO students(sname,age,score,time) VALUES('小明',22,100,now());
INSERT INTO students(sname,age,score,time) VALUES('小红',23,80,now());
INSERT INTO students(sname,age,score,time) VALUES('小绿',24,80,now());
INSERT INTO students(sname,age,score,time) VALUES('黑',23,70,now());
-- 添加复合索引
alter table students add index idx_sname_age_score(sname,age,score);
-- 索引失效情况
explain select * from students where sname="小明" and age = 22 and score = 100;
explain select * from students where sname="小明" and age = 22;
explain select * from students where sname="小明";
explain select * from students where sname="小明" and score = 80;
-- 不在索引列上做任何计算、函数操作,会导致索引失效而转向全表扫描。
explain select * from students where left(sname,2) = "小明";
-- 存储引擎不能使用索引中范围条件右边的列。
explain select * from students where sname="小明" and age > 22 and score = 100;
-- Mysql在使用不等于时无法使用索引会导致全表扫描。
explain select * from students where sname!="小明";
-- is null可以使用索引,但是is not null无法使用索引。
explain select * from students where sname is not null;
-- like以通配符开头会使索引失效导致全表扫描。
explain select * from students where sname like "明%";
-- 字符串不加单引号索引会失效。
explain select * from students where sname = 123;
-- 使用or连接时索引失效。
explain select * from students where sname="小明" or age = 22;
代码演示:
-- 单表查询优化
CREATE TABLE IF NOT EXISTS article (
id INT(10) PRIMARY KEY AUTO_INCREMENT,
author_id INT(10) NOT NULL,
category_id INT(10) NOT NULL,
views INT(10) NOT NULL,
comments INT(10) NOT NULL,
title VARBINARY(255) NOT NULL,
content TEXT NOT NULL
);
INSERT INTO article(author_id, category_id, views, comments, title, content) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');
#1.查询category_id为1的,且comments大于1的情况下,views最多的id和author_id的信息
explain select id,author_id
from article
where category_id=1 and comments>1 order by views desc limit 1;
#2.建立索引
alter table article add index idx_ccv(category_id,comments,views);
#3.再次测试
explain select id,author_id
from article
where category_id=1 and comments>1 order by views desc limit 1;
#4.重新创建索引 这里保证两个索引之间没有其他的索引列 使key_len效率最高
drop index idx_ccv on article;
alter table article add index idx_cv(category_id,views);
#5.再次测试
explain select id,author_id
from article
where category_id=1 and comments>1 order by views desc limit 1;
内连接时,mysql会自动把小结果集的选为驱动表,所以大表的字段最好加上索引。左外连接时,左表会全表扫描,所以右边大表字段最好加上索引,右外连接同理。我们最好保证被驱动表上的字段建立了索引。
代码演示:
drop table if exists students;
CREATE TABLE students (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT "主键id",
sname VARCHAR (24) COMMENT '学生姓名',
age INT COMMENT '年龄',
score INT COMMENT '分数',
time TIMESTAMP COMMENT '入学时间'
);
INSERT INTO students(sname,age,score,time) VALUES('小明',22,100,now());
INSERT INTO students(sname,age,score,time) VALUES('小红',23,80,now());
INSERT INTO students(sname,age,score,time) VALUES('小绿',24,80,now());
INSERT INTO students(sname,age,score,time) VALUES('黑',23,70,now());
-- 分组优化
alter table students add index idx_sas(sname,age,score);
explain select count(*),sname
from students
where sname="小明" and age > 22
GROUP BY score;
介绍:MySQL的慢查询日志是MySQL提供的一种日志记录,他用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time
值的SQL,则会被记录到慢查询日志中。可以由它来查看哪些SQL超出了我们最大忍耐时间值。
默认情况下,MySQL数据库没有开启慢查询日志,需要手动设置参数:
show variables like '%slow_query_log%';
set global slow_query_log = 1;
set global long_query_time = 1;
SHOW VARIABLES LIKE 'long_query_time%';
/data/...-slow.log;
在Navicat中输入
show variables like '%slow_query_log%
命令',就可以得到文件目录;
代码演示:
-- 建表语句
DROP TABLE IF EXISTS person;
CREATE TABLE person (
PID int(11) AUTO_INCREMENT COMMENT '编号',
PNAME varchar(50) COMMENT '姓名',
PSEX varchar(10) COMMENT '性别',
PAGE int(11) COMMENT '年龄',
SAL decimal(7, 2) COMMENT '工资',
PRIMARY KEY (PID)
);
-- 创建存储过程
create procedure insert_person(in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i +1;
insert into person (PID,PNAME,PSEX,PAGE,SAL) values (i,concat('test',floor(rand()*10000000)),IF(RAND()>0.5,'男','女'),FLOOR((RAND()*100)+10),FLOOR((RAND()*19000)+1000));
until i = max_num
end repeat;
commit;
end;
-- 调用存储过程
call insert_person(30000);
-- 慢查询日志
-- 查看是否开启:show variables like '%slow_query_log%';
show variables like '%slow_query_log%';
-- 开启日志:set global slow_query_log = 1;
set global slow_query_log = 1;
-- 设置时间: set global long_query_time = 1;
set global long_query_time = 3;
-- 查看时间: SHOW VARIABLES LIKE 'long_query_time%';
SHOW VARIABLES LIKE 'long_query_time%';
select * from person;
结果:
注意:非调优场景下,一般不建议启动改参数,慢查询日志支持将日志记录写入文件,开启慢查询日志会或多或少带来一定的性能影响。
来源:blog.csdn.net/qq_43372633/article/details/130846879