作者:微信小助手
发布时间:2020-08-23T09:41:43
点击上方蓝色“程序猿DD”,选择“设为星标”
回复“资源”获取独家整理的学习资料!
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。
第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。
第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。
注:工具的利弊,请自行调研,官网和社区优先。
根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。
基于水平分库分表,拆分策略为常用的hash法。
端上除了partition key只有一个非partition key作为条件查询
映射法
基因法
注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。
端上除了partition key不止一个非partition key作为条件查询
映射法
冗余法
注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?
后台除了partition key还有各种非partition key组合条件查询
基于水平分库分表,拆分策略为常用的hash法。
注:用**NoSQL法**解决(ES等)。
基于水平分库分表,拆分策略为常用的hash法。
水平扩容库(升级从库法)
注:扩容是成倍的。
水平扩容表(双写迁移法)第一步:(同步双写)修改应用配置和代码,加上双写,部署;第二步:(同步双写)将老库中的老数据复制到新库中;第三步:(同步双写)以老库为准校对新库中的老数据;第四步:(同步双写)修改应用配置和代码,去掉双写,部署;
注:双写是通用方案。
示例GitHub地址:https://github.com/littlecharacter4s/study-sharding
往期推荐
Apache Shiro 1.6.0 发布!修复绕过授权高危漏洞
ES 在数据量很大的情况下(数十亿级别)如何提高查询效率?
Mybatis是如何实现SQL语句复用功能的?
扛住100亿次请求?我们来试一试!
SpringBoot + Mybatis + Druid + PageHelper 实现多数据源分页
我的星球是否适合你?
点击阅读原文看看我们都聊过啥?